DAVANGERE UNIVERSITY

SHIVAGANGOTHRI - 577 007, DAVANGERE

SYLLABUSFOR

BACHULAR OF SCIENCE (B. SC.)SEMESTER SCHEME – NEP - 2020

MATHEMATICS

(Major)

SEMESTER - V											
		Course code	Title of the Paper	Marks			Teaching hours/week			Credi t	Duration of exams (Hours)
Categ ory	750			IA	SEE	Total	L	т	Р		
DSC		MATDSCTS 5.1	Abstract Algebra And Vector Calculus	40	60	100	4	-	-	4	2
		MATDSCPS 5.1	Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested (Practical)	25	25	50	-	-	4	2	3
	С	MATDSCTS 5.2	Complex Analysis, Line And Multiple Integrals	40	60	100	4	-	-	4	2
		MATDSCPS 5.2	Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested (Practical)	25	25	50	-	-	4	2	3
SEC	C-4	-	Employability Skills / Cyber security	25	25	50	2	-	2	3	01

BoS-Chairman,
Department of Mathematics
Davangere University
Shivagangotri, Davangere-577007.

Registrar
Davangere University
Shivagangotri, Davangere

Dr. RAMALINGAPPA
Professor and Dean,
Faculty of Science & Technology
Davangere University Chivagangoths
DAVANGERE - 100

SEMESTE	R - VI
---------	--------

Categ ory	Course code	Title of the Paper	Marks			Teaching hours/week			Credi t	Duration of exams (Hours)
			IA	SEE	Total	L	Т	Р		
	MATDSCTS 6.1	Vector Algebra, Improper Integration, Ordinary Differential Equation-li	40	60	100	4	-	-	4	2
DSC	MATDSCPS 6.1	Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested. (Practical)	25	25	50	-	-	4	2	3
	MATDSCTS 6.2	Numerical Analysis	40	60	100	4	-	-	4	2
	MATDSCPS6.2	Practical/Lab Work to be performed in Computer Lab (FOSS) (Practical)	25	25	50	-	-	4	2	3
SEC-4	-	Internship	-	-	-	-	-	-	2	

PAPER-V DSC-5.1

ABSTACT ALGEBRA AND VECTOR CALCULUS

Unit I: Groups-II

Normal Subgroups - properties, examples and problems, Quotient group, Homomorphism and Isomorphism of groups - properties examples and problems, Kernel and image of a homomorphism, Normality of the kernel, Fundamental theorem of homomorphism, Properties related to isomorphism, 15 hours **Permutation group** — Cayley's Theorem.

Unit II: Rings, Integral Domains, Fields

Rings - definition and properties of rings, Rings of integers modulo n, Integral Domain, Fields. examples and standard properties .Subrings, Ideals - Principal, Prime and Maximal ideals in a commutative ring -15 hours examples and standard properties

Unit -III: Vector calculus

Geometry of space curve: -Multiple product - scalar triple product, vector triple product, geometrical interpretation, related problems; vector function of a scalar variable interpretation as a space curve, derivative, tangent, normal and binormal vectors to a space curve; Curvature and Torsion of a space curve-15 Hours definitions, derivation and problems, Serret-Frenet formulae.

Unit-IV: Vector differential calculus

Gradient of a scalar field, geometrical meaning, directional derivative, unit normal using surfaces - tangent plane and normal to the surface; Vector field - divergence and curl of a vector field, geometrical meaning, solenoidal and irrotational fields; Laplacian of a scalar field; Vector identities.

15 Hours

Reference Books

- I N Herstein(1990), Topics in Algebra, 2nd Edition, Wiley Eastern Ltd., New Delhi. 1.
- Vijay K Khanna and S K Bhambri (1998), A Course in Abstract Algebra, Vikas Publications. 2.
- Michael Artin (2015), Algebra, 2nd ed., Pearson. 3.
- Joseph A, Gallian (2021), Contemporary Abstract Algebra, 10th ed., Taylor and Francis Group. 4.
- M. D. Raisinghania, Vector Calculus, S Chand Co. Pvt. Ltd., 2013. 5.
- Hill. Edition, Schaum's Outline Mc-Graw Series. 2^{nd} Vector Analysis, Spiegel, 6. Education, 2017.
- C. E. Weatherburn, Elementary Vector Analysis, Alpha edition, 2019. 7.
- P. N. Wartikar and J. N. Wartikar, A Textbook of Applied Mathematics, Vol. II, Pune 8. Vidyarthi Griha Prakashan, Pune, 2009

Department of Mathematics

Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested Software:

Maxima/Scilab

Suggested Programs:

- 1. Examples on different types of rings.
- 2. Examples on integral domains
- 3. Examples on fields.
- 4. Verification of normality of a given subgroup.
- 5. Illustrating homomorphism of groups
- 6. Program on multiple product of vectors Scalar and Cross product.
- 7. Program on vector differentiation and finding unit tangent.
- 8. Program to find curvature and torsion of a space curve.
- 9. Program to find the gradient and Laplacian of a scalar function, divergence and curl of a vector function.
- 10. Program to demonstrate the physical interpretation of gradient, divergence and curl.

DSC-5.2 PAPER-VI

COMPLEX ANALYSIS, LINE AND MULTIPLE INTEGRALS

Unit - I: Complex numbers and functions of complex variables:

Complex numbers-Cartesian and polar form-geometrical representation-complex-Plane, Euler's formula- $e^{i\theta} = \cos\theta + i\sin\theta$. Functions of a complex variable-limit, continuity and differentiability of a complex function. Analytic function, Cauchy-Riemann equations in Cartesian (Cartesian form only)-Harmonic function-standard properties of analytic functions-construction of analytic function when real or imaginary part is given-Milne Thomson method.

Unit -II: Bilinear Transformations

Linear transformation- Definitions-Bilinear transformations- Cross-ratio of four points- Cross-ratio preserving property- Preservation of the family of straight lines and circles- Conformal mappings- Discussion of the transformations $w = z^2$, $w = \sin z$, $w = e^z$, $w = \frac{1}{2}\left(z + \frac{1}{z}\right)$. 15 Hours

Unit-III: Complex integration

definition, Line integral, properties and problems. Cauchy's Integral theorem-proof using Green's theorem-direct consequences. Cauchy's Integral formula with proof-Cauchy's generalized formula for the derivatives with proof and applications for evaluation of simple line integrals. Cauchy's integral problems

15 Hours

Unit-IV: Line and Multiple Integrals

Definition of line integral and basic properties examples evaluation of line integrals. Definition of double integral, Evaluation of double integrals by change of variables – Definition of triple integral and evaluation – change of variables

Reference Books:

- 1. L. V. Ahlfors, Complex Analysis, 3rd Edition, McGraw Hill Education
- 2. Bruce P. Palka, Introduction to the Theory of Function of a Complex Variable, Springer
- 3. Serge Lang, Complex Analysis, Springer
- 4. Shanthinarayan, Theory of Functions of a Complex Variable, S. Chand Publishers.
- 5. S. Ponnuswamy, Foundations of Complex Analysis, 2nd Edition, Alpha Science International Limited.
- 6. R.V. Churchil & J.W. Brown, Complex Variables and Applications, 5th ed, McGraw Hill Companies
- 7. B. S. Grewal, Higher Engineering mathematics, Khanna Publications.
- 8. H. K. Das, Higher Engineering Mathematics, S. Chand publishers.
- 9. N.P Bali Integral calculus Golden series

Bes-Chairman,

Department of Mathematics

Davangere University

Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested Software: Maxima/Scilab

- 1. Program on verification of Cauchy Riemann equations (Cartesian form) or test for analyticity.
- 2. Program to check whether a function is harmonic or not.
- 3. Program to construct analytic functions (through Milne–Thompson method)
- 4. Program to find Cross ratio of points and related aspects.
- 5. Program to find fixed points of bilinear transformations.
- 6. Evaluation of the line integral with constant limits.
- 7. Evaluation of the double integral with constant limits.
- 8. Evaluation of the triple integral with constant limits.
- 9. Evaluation of the line integral with variable limits.
- 10. Evaluation of the double integral with variable limits.
- 11. Evaluation of the triple integral with variable limits.

DSC-6.1 PAPER-VII

VECTOR ALGEBRA, IMPROPER INTEGRATION, ORDINARY DIFFENRENTIAL EQUATION-II

Unit - I: Vector spaces

Vector spaces - Definition, examples and properties; **Subspaces** - Examples, criterion for a sub- set to be a subspace and some properties; **Linear Combination** - Linear span, Linear dependence and Linear independence, basic properties of linear dependence and independence, techniques of determining linear dependence and independence in various vector spaces and related problems; **Basis and dimension** - Coordinates, ordered basis, some basic properties of basis and dimension and subspace spanned by given set of vectors;

Unit - II: Linear Transformations

Linear transformation - Definition, examples, equivalent criteria, some basic properties and matrix representation and change of basis and effect on associated matrix, similar matrices; **Rank** - **Nullity theorem** - Null space, Range space, proof of rank nullity theorem and related problems.

15 Hours

Unit - III: Improper Integrals

Definitions, Properties and examples, relations between beta and gamma functions, standard theorems, applications of evaluations of definite integrals, duplication formula and applications.

15 Hours

Unit-4. DIFFERENTIAL EQUATIONS -II

Solutions of second order ordinary linear differential equations with variables coefficients by the following methods.

- a) When a part of complementary function is given
- b) Changing the independent variable
- c) Changing the dependent variable
- d) Variation of parameters (variable coefficient only)
- e) Conditions for exactness and the solution when the equation is exact.

15 Hours

Reference Books:

- 1. I N. Herstein, Topics in Algebra, 2nd Edition, Wiley.
- 2. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003), Linear Algebra (4th Edition), Printice-Hall of India Pvt. Ltd.
- 3. F. M. Stewart, Introduction to Linear Algebra, Dover Publications.
- 4. S. Kumaresan, Linear Algebra, Prentice Hall India Learning Private Limited.
- Kenneth Hoffman & Ray Kunze (2015), Linear Algebra, (2nd Edition), Prentice Hall India Leaning Private Limited.
- 6. Gilbert. Strang (2015), Linear Algebra and its applications, (2nd Edition), Elsevier.
- 7. Vivek Sahai & Vikas Bist (2013), Linear Algebra (2nd Edition) Narosa Publishing.
- 8. Serge Lang (2005), Introduction to Linear Algebra (2nd Edition), Springer India.
- 9. T. K. Manicavasagam Pillai and K S Narayanan, Modern Algebra Volume 2.
- 10. B. S. Grewal, Higher Engineering mathematics, Khanna Publications.
- 11. H. K. Das, Higher Engineering Mathematics, S. Chand publishers.

Practical/Lab Work to be performed in Computer Lab (FOSS) Suggested Software's: Maxima/Scilab / Python/R.

Suggested Programs:

- 1. Program on linear combination of vectors.
- 2. Program to verify linear dependence and independence.
- 3. Program to find basis and dimension of the subspaces.
- 4. Program to verify if a function is linear transformation or not.
- 5. Program to find the matrix of linear transformation.
- 6. Program to find the Eigenvalues and Eigenvectors of a given linear transformation.
- 7. Program on Rank nullity theorem.
 - 8. Evaluation of the integrals using gamma function.
 - 9. Evaluation of the integrals using Beta function.
 - 10. solving second order differential equation with variable coefficient(all methods)

BoS-Chairman,
Department of Mathematics

Davangere University Shivagangotri, Davangere-577007. 10

DSC-6.2 PAPER-VIII NUMERICAL ANALYSIS

Unit - I: Algebraic and Transcendental Equations

Solutions to algebraic and transcendental equations - Bisection method, Regula-Falsi method, iterative method Newton-Raphson method and secant methods

15 Hours

Unit - II: Finite Differences

Finite differences. Forward, backward and central differences and shift operators: definitions, properties and problems; Polynomial interpolation - Newton-Gregory forward and backward interpolation formulas, Gauss's Forward and backward interpolation formulas, Lagrange interpolation polynomial, Newton's divided differences and Newton's general interpolation formula

15 Hours

Unit-III: Numerical Differentiation an Integration

Formula for derivatives (till second order) based on Newton-Gregory forward and backward interpolations (Derivations and problems based on them). Numerical Integration - General quadrature formula, Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule and Weddell's rule (derivations for only general quadrature formula, trapezoidal rule and Simpson's 1/3rd rule and problems on the applications of all formulas).

Unit – IV: Solution of initial value problems

Solution of initial value problems for ordinary linear first order differential equation by Taylor's series, Euler's and Euler's modified method ,picadors methods and Runge-Kutta's fourth order method

15 Hours

Reference Books:

- 1. E. Isaacson and H. B. Keller, Analysis of Numerical methods, Dover Publications.
- 2. S. S. Sastry, *Introductory methods of Numerical Analysis*, 5th Edition, PHI Learning Private Limited.
- 3. E Kreyszig, Advanced Engineering Mathematics, Wiley India Pvt. Limited
- 4. B. S. Grewal, Numerical Methods for Scientists and Engineers, Khanna Publishers.
- 5. M. K. Jain, S. R. K. Iyengar and R. K. Jain, *Numerical Methods for Scientific and Engineering computation*, 4th Edition, New Age International
- 6. H. C. Saxena, Finite Difference and Numerical Analysis, S. Chand Publishers
- 7. B. D. Gupta, Numerical Analysis, Konark Publishers Pvt. Ltd.

BoS-Chairman
Department of Mathematics

Practical/Lab Work to be performed in Computer Lab (FOSS)

Suggested Software's: Maxima/Scilab

Suggested Programs:

- 1. Program to find root of an equation using bisection
- 2. Program on Regula-Falsi methods
- 3. Program on newton Rapson methods
- 4. Newton forward and backward interpolation
- 5. Program to evaluate integral using Simpson's 1/3 and 3/8 rules.
- 6. Program to evaluate integral using Trapezoidal
- 7. Program on Weddle rules
- 8. Program to find the missing value of table using Lagrange method.
- 9. Program on Modified Euler's method
- 10. Program on Runge-Kutta method

BoS-Chairman,
Department of Mathematics
Davangere University
Shivagangotri, Davangere-577007.

DEAN

12

Vth and VI th Semester B.Sc. Examination

(NEP Scheme)

MATHEMATICS

DSC-5.1, DSC-5.2, DSC-6.1, DSC-6.2: Time: 2 Hours Max. Marks: 60 Note: All the sections are compulsory is compulsory. SECTION - A 1. Answer any FIVE questions of the following: (5x2 = 10)a) b) c) d) e) f) g) h) SECTION - B Answer any FIVE questions of the following: (5x4 = 20)2. 3. 4. 5. 6. 7. 8. 9. SECTION - C (3x10 = 30)Answer any THREE full questions of the following: 10. a) b) 11. a) b) 12. a) b) 13. a)

b)

14. a)

b)

15. a)

b) BoS-Chairman,
Department of Mathematics

Department of Mathematics
Davangere University
Shivagangotri, Davangere-577007.

Registrar
Davangere University
Shivagangotri, Davangere