	NCED TECHNIQUES IN MICROBIOLOGY [Value Added Course e from the academic year SEMESTER - III	e]	
Subject Code	20ATCM01	IA Marks	25
Number of Lecture Hours/Week	03	Exam Mar	ks 75
Sotal Number of Lecture 36 Hours Exam Hours			rs 03
	CREDITS - 02		
Course objectives: 1) To learn the basic and adva 2) To take up additional skill t			
Module 1		1 6 .	Teaching Hours
Laboratory Safety: Organi precautions in clinical labora General health care – Vacci Laboratory care and caution – Cuts and wounds – Fire Acc	tory – Personal hygiene nation Schedule for te s – Do's and Dont's – la	e and care – echnicians –	12 hours
Module 2 Clinical Sample Analysis		processing,	12 hours
Analysis Microscopic analysis of c Sputum, Pus, Blood, CSF an Culture methods: Culturin clinical specimens. Culture special media – selective media media – transport media. Module 3	d other body fluids. g and isolation of pat media – General purp	thogens from	
Advanced Techniques &	- Automated culture	systems –	14 hours
Course outcomes:			
At the end of this course, stud	ents will be able to,		
1) Understand laboratory safet	y methods.		
2) Skilled in handling clinical s	specimens for microbiolo	gical analysis	
3) Gain knowledge about auto	mated techniques in Clir	nical microbiolog	gical techniques.
Question paper pattern:			
• The question paper will	have eight questions.		
• Each full Question con	sisting of 15 marks		
• There will be 3 full ques module.	stions (with a maximum	of four sub que	estions) from each
• Each full question will module.	have sub questions cov	vering all the to	pics under a
• The students will have from each module.	to answer 5 full question	ons, selecting o	one full question

Course Chairman:

Prof. Gayathridevara

Department of Studies in Microbiology,

Davangere University, Shivagangothri,

Davangere- 577007, Karnataka – India

References:

 Ananthanarayanan.R. and Paniker C.K.J Text Book of Microbiology, 9th Edition
 Orient Learning (2012)

Orient Longman, (2013).

- 2. James cappuccino, Natalie Sherman.(2004) Microbiology: A Laboratory manual.
- 3. Ochei. J and A. Kolhatkar, 2000. Medical laboratory science: Theory and Practice, McGraw Hill Education.
- 4. Sood Ramnik. 2009. Medical Laboratory Technology: Methods and Interpretations. Jaypee Brothers, Medical Publishers Pvt. Limited.
- 5. Glick, B.J., Pasternak, J.J., Patten, C.L. 1994. Molecular Biotechnology: Principles and Applications of Recombinant DNA, 4th edition, ASM Press.

Department of Studies in Microbiology, Shivagangothri, Davangere - 577 007 Name of the Program: Value Added Course				
		Course Code: M.Sc. VA MB		
	Name of th	ie Course: Microbial enzymes for	-	logv.
Coi	urse Credits	No. of Hours per Week		eaching Hours
	2 Credits	3 Hrs		6
		0 111 0		rs
CIA	(CCE + IAT)	SEE	Total	Marks
	25 Marks	75 Marks	1	00
Pedag	gogy: Classrooms	s lecture, Case studies, Group discus	sion, Seminar & f	ield work
etc.,				
Cours	e Objectives:			
a)	To reduce level	s of polluting emission and waste ge	eneration thereby	7
	protecting or in	nproving the environmental quality.		
b)	To encourage u	tilization of residues, recyclable was	ste and local mate	erials as raw
	materials for co	nversion processes		
c)	To reduce the r	ate of growth of energy consumptio	n while enhancin	g economic
	development.			
d)		with detailed use of enzymes for bi	ofuel using ligno	cellulosic
materials and synthetic polymers.				
Course Outcomes: On successful completion of the course, the Students will be able to				
a) Gain basic knowledge of the subject will be acquainted with some applied aspects i				
microbiology to create awareness and more interest in the subject.			-	
b)		detailed fermentation technology a	nd use of enzyme	2S.
c) In recruiting a job in fermentation based industry.				
d) Learn sustainable development by maintaining soil health.e) Increase the capacity for innovation in development and enhance competitiveness in				
Green Technology.				
Syllab	ous:			Hours
Modu	le No. 1: Microb	ial enzymes for greener technolo	gy	15
	uction to green tec	hnology: Water & soil pollution. Ecos	system basics of b	iogeochemical
Introdu	-	zymes, enzyme nomenclature, classifi	•	-
		Zymes, enzyme nomenerature, erassin		-
ycles.		sources Microbial enzymes and their i		
ycles. nzyme	es from microbial	sources.Microbial enzymes and their in nases, microbial dioxygenases. Microbial		
ycles. nzyme xygena	es from microbial ases, Monooxyger	nases, microbial dioxygenases, Microl	bial laccase, perox	idases PU
ycles. nzyme oxygen ydroly	es from microbial ases, Monooxyger sis. Classification		oial laccase, perox xidase (Lip), mang	idases PU ganese dependent

of enzymatic treatment over other techniques

Module No. 2: Plastics in environmental and biotechnological perspectives on microbial degradation

04

Introduction, polymers and microbial degradation, PET, PU, PE, PA, PS, PVC, PP, plastic depolymerisation, biodegradable plastics, plastic wastes in the environment, interaction between microorganisms and plastic, plastic biodegradation process.

	ule No. 3: Characterisation and engineering of plastic ading polyesterases	04
Aroma	atic polyesterase and their structure ,Aliphatic polyesterase, Signatic polyesterase	nificance, Techniques in
Modu waste	ale 4: Microbial degradation and volarization of plastic	04
Introd	duction, Types and properties, Microbial degradation of syn mine microbial degradation of plastics.	thetic polymer, Factors
Modu	ale5: Biopolymers and plastics	05
comportion of the second se	sis of biopolymers, Synthesis and applications of biopolymer compo- nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments of	ine microbial degradation,
compor plastic mpact	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ	ine microbial degradation,
comport plastic mpact Mod Biorem Enzyme	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments of on polymers. Iule6: Enzymatic bioremediation mediation, types of bioremediation – Insitu, Exsitu. Tool to fight envi- nes from microbial sources, Microbial enzymes and their relevance in	ine microbial degradation, lumpsites.Environmental 04 ronmental pollutants,
mpact Mod Biorem Enzyme	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments c on polymers. Jule6: Enzymatic bioremediation mediation, types of bioremediation – Insitu, Exsitu. Tool to fight envi	ine microbial degradation, lumpsites.Environmental 04 ronmental pollutants,
mpact Mod Biorem Enzyme	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments of on polymers. Jule6: Enzymatic bioremediation mediation, types of bioremediation – Insitu, Exsitu. Tool to fight envi- nes from microbial sources, Microbial enzymes and their relevance in tics and therapeutic applications, applied biocatalysis. Development Activities:	ine microbial degradation, lumpsites.Environmental 04 ronmental pollutants, i industries, medicine,
mpact Mod Biorem Enzyme cosmeti Skill I	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments of on polymers. Jule6: Enzymatic bioremediation nediation, types of bioremediation – Insitu, Exsitu. Tool to fight envi- tes from microbial sources, Microbial enzymes and their relevance in tics and therapeutic applications, applied biocatalysis. Development Activities: Using logic and reasoning to identify the strengths and weakne solutions, conclusions or approaches to problems regarding mi	ine microbial degradation, lumpsites.Environmental 04 ronmental pollutants, a industries, medicine, ss of alternative icrobiology.
mpact Mod Biorem Enzyme cosmeti Skill I	nents of plastics (PE, PS, PP, PVC, PUR & PET) and factors determ eating bacteria, Microorganisms in plastic degrading environments of on polymers. Iule6: Enzymatic bioremediation nediation, types of bioremediation – Insitu, Exsitu. Tool to fight envi- tes from microbial sources, Microbial enzymes and their relevance in tics and therapeutic applications, applied biocatalysis. Development Activities: Using logic and reasoning to identify the strengths and weakne solutions, conclusions or approaches to problems regarding mi Understanding the implications of new information for both cu solving and decision making regarding experiments.	ine microbial degradation, lumpsites.Environmental 04 ronmental pollutants, a industries, medicine, ss of alternative icrobiology.

- 1. Vipin Chandra Kalia, 2015. Microbial Factories Volume 2, Springer.
- 2. Sina Ebnesajjad, 2013. Handbook of Biopolymer and Biodegradable plastics. William Andrew Publications.

Bioinformatics and Insilico drug discovery [Value Added Course] (Effective from the academic year 2020 -2021) SEMESTER - III			
Subject Code	20MIB03	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	75
Total Number of Lecture Hours	48	Exam Hours	03
CREDITS - 02			

Prerequisites for the Course:

- Basic Knowledge of Cell Biology & Genetics
- Biochemistry
- Molecular biology
- Bio-statistics
- Computer Applications

Course objectives:

To provide students with knowledge of Biological databases which are very much essential for understanding modern biology and to introduce some tools to help students to analyze biological data in effective manner

- Biological Databases
- Sequence alignment and database search
- Phylogenetic Analysisand Predictive Methods
- Plasmid mapping and Structure visualization

Module -1	Teaching
	Hours
BIOLOGICAL DATABASES	12 hours
Introduction to bioinformatics, meaning of databases, types of databases. The	
nucleotide and protein sequence Databases: GenBank, DDBJ and EMBL. Primary	
and Secondary sequences databases: (SWISS PROT, PIR, NRL3D, PROSITE,	
PRINTS, BLOCKS and Pfam), ExPASy, Structure databases: Protein Data Bank	
(PDB), CATH, SCOP. File format, contents, search of databases- Gene bank flat	
file, PDB flat file, PIR format, FASTA Format. Structure file formats: PDBSUM,	
PDBLite and MMDB Specialized databases: NCBI-PubMed, PubChem, OMIM,	
OMIA, Metabolic Pathway-KEGG, EST databases, HPD and SGD databases.	
	l

SEQUENCE ALIGNMENT AND DATABASE SEARCHES	12 hours
Introduction-The evolutionary basis of sequence alignment, the Modular Nature	
of Proteins. Methods of sequence alignment: Pairwise (Global and Local	
Alignment) and Multiple Sequence Alignment (MSA). Progressive sequence	
alignment method, Position Specific Scoring Matrix (PSSM), DOT PLOT method.	
Optimal Alignment Methods- Dynamic Programming. Internet based analysis	
tools- Clustal W and T-coffee. Practical issues of alignment, Profiles and Hidden	
Markov Model, Motif & Patterns. Database similarity searching: BLAST and	
FASTA, PSI-BLAST & PHI-BLAST, Low complexity regions, Repetitive Elements.	
PHYLOGENETIC ANALYSIS Introduction, concepts of trees, phylogenetic trees and multiple alignments.	12 hours
Distance matrix method (MD), character based methods, methods of evaluating	
phylogenesis, summary of the phylogenetic methods. Steps in constructing	
alignments and phylogenesis. Phylogenetic softwares (CLUSTAL W, PHYLIP etc),	
PREDICTIVE METHODS	
Predictive Methods using Nucleotide sequences: Framework, Masking repetitive	
DNA, Database searches, Codon Bias Detection, Detecting Functional Sites in the	
DNA (promoters, transcription factor binding sites, translation initiation sites),	
Integrated Gene Parsing, finding RNA Genes, Web based tools (GENSCAN, GRAIL,	
GENEFINDER). Predictive Methods using Protein sequences: Protein Identity	
based on composition, Physical properties Based on sequence, secondary	
structure and folding classes, specialized structures or features, tertiary	
structure. Related web based software (JPRED, PROSEC, NNPREDICT and	
SOPMA)	
MOLECULAR MODELING, DRUG DESIGN AND DISCOVERY:	12 ours
Generation of Rational Approaches in Drug Design, molecular docking,	
quantitative structure-activity relationship (QSAR), Receptor Mapping,	
Estimating Biological Activities, Molecular Interactions: Docking, Calculation of	
Molecular Properties, Energy Calculations (no derivation), Target identification,	
Target validation, Modeling, Virtual screening, lead identification, Lead Validation, and Molecular Interactions.	
	l

COURSE OUTCOMES:	
• Able to understand the Databases and its types and tools.	
Able to understand the sequence alignment and database searches	
Able to know about phylogenetic analysis.	
Able to understand Restriction mapping and Sequencing methods.	
Able to know applications of insilico modeling in modern biology.	
Able to study insilico drug design	
Question paper pattern:	
• The question paper will have Eight questions.	
Each full Question consisting of 15 marks	
• There will be 2 full questions(with a maximum of four	
sub questions)from each module.	
• Each full question will have sub questions covering all the	
topics under a module.	
The students will have to answer 5 full questions, selecting one full	
question from each module.	
Course Coordinators:	
Dr. Virupakshaiah.DBM	
M.Sc., Ph.D., PGD (Bioinfo)	
Associate Professor,	
Department of Microbiology,	
Shivagangothri,	
Reference Books:	
 Introduction to Bioinformatics – Arthur Lesk, Oxford, 2006. Bioinformatics – Stuart M Brown, NYU Medical Center, NY USA. 2000. Fundamental Concepts of Bioinformatics – D E Krane& M L Raymer, Pearson, 2006. Computational methods for macromolecular sequence analysis – R F Doolittle. academicPress, 1996. Computational methods in Molecular Biology – S.L.Salzberg, D B Searls, S. Kasif, Elsevier, 1998. Bioinformatics, Methods And Applications– Genomics, Proteomics And Drug discovery – S C Rastogi, n mendiratta& p rastogi, phi, 2006. 	

Department of Microbiology

Value Added Course (VAC):

Diversity of Actinobacteria and Bioactive Molecules

(Effective from the academic year 2020 -2021) SEMESTER - III

Subject Code	20DABM01	IA Marks	25
Number of Lecture Hours/Week	03	Exam Marks	75
Total Number of Lecture Hours	40	Exam Hours	03

Course objectives:

To provide students with knowledge of advanced Bio-prospective of Actinobacterial Research and Technology to build technical competence in industries. Students will be able to learn:

- Diversity of Actinobacteria
- Systematics of Actinobacteria

• Biological Potentials of Actinobacteria for

Pharmaceutical/Food/Brewery and other Industries

Module-1	Teaching Hours
Diversity of Actinobacteria: Introduction, Actinobacteria: Classification, Characteristics, Life Cycle, Habitat of Actinobacteria: Terrestrial environment, Aquatic environment, Freshwater, Marine water; General characteristics of Actinobacteria: Aerial mycelium , substrate mycelium, Morphological appearance and Economic Importance	12 hours
Module-2	
Systematics of Actinobacteria: Basic biosystematics: Screening of the prominent isolates of actinobacteria; Characterization of actinobacteria; Biochemical and Physiological properties; Electron microscopic characterization; Antibiotic susceptibility pattern; Antimicrobial attributes; Synthesis of melanin. Molecular systematics: Genomic DNA, PCR amplification, 16S rRNA/rDNA, G+C % content determination, Systematic position of the novel isolates Chemosystematics: Whole cell sugar, Cell wall amino acids, Cell wall fatty acids, Polar lipids	14 hours
Module-3	
Biological Potentials of Actinobacteria for Pharmaceutical/Food/Brewery and other Industries: Bioprospectives of actinobacteria in Pharmaceutical/Food/Brewery and other Industries, Bioactive molecules, Enzymes: Qualitative Screening Quantitative Screening, Enzyme assay and purification, Bioherbicides, Probiotics, Biosurfactants, Vitamins, Pigments, Nanoparticle synthesis, Bioremediation, Control of plant diseases, Enhancement of plant growth, Biolarvicides, Odor and flavor compounds production	14 hours

Course outcomes:

On completion of this course, students will have knowledge in:

- 1. Various areas of Actinobacteria and their bioactive molecules.
- 2. Scholarly progression and intellectual development the programme aims to equip students with excellence in education and industrial skills.
- 3. Promoting all round personality development through multi-dimensional education a spirit of self-confidence and self-reliance will be infused.
- 4. Values of professional ethics and be made ready to contribute to society as responsible individuals.

Question paper pattern:

- The question paper will have eight questions.
- Each full Question consisting of 15 marks
- There will be 3 **full** questions (with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Course Coordinator:

Dr. Shivaveerakumar S.

Department of Studies in Microbiology,

Davangere University, Shivagangothri,

Davangere- 577007, Karnataka – India

References:

- Goodfellow, M. and O'Donnell, A.G., 1993. Roots of bacterial systematics. In Handbook of New Bacterial Systematics (Goodfellow, M. and O'Donnell, A.G., eds), pp. 3-54. Academic Press. London.
- Korn-Wendisch, F., Kutzner, H.J., 1992. The family Streptomycetaceae. In: The Prokaryotes, A Hand book on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application. Eds: Balows, A., Truper, H.G., Dworkin,
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2015, 80, 1–43.